Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Biosens Bioelectron ; 258: 116318, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38701538

ABSTRACT

We report a massive field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13 mm2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction force into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave.

2.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546726

ABSTRACT

We report a large field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13mm 2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction stress into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave. One-Sentence Summary: An optical platform for fast, concurrent measurements of cell mechanics at 83 frames per second, over a large area of 13mm 2 .

3.
Nature ; 620(7975): 855-862, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532930

ABSTRACT

Patients from historically under-represented racial and ethnic groups are enrolled in cancer clinical trials at disproportionately low rates in the USA1-3. As these patients often have limited English proficiency4-7, we hypothesized that one barrier to their inclusion is the cost to investigators of translating consent documents. To test this hypothesis, we evaluated more than 12,000 consent events at a large cancer centre and assessed whether patients requiring translated consent documents would sign consent documents less frequently in studies lacking industry sponsorship (for which the principal investigator pays the translation costs) than for industry-sponsored studies (for which the translation costs are covered by the sponsor). Here we show that the proportion of consent events for patients with limited English proficiency in studies not sponsored by industry was approximately half of that seen in industry-sponsored studies. We also show that among those signing consent documents, the proportion of consent documents translated into the patient's primary language in studies without industry sponsorship was approximately half of that seen in industry-sponsored studies. The results suggest that the cost of consent document translation in trials not sponsored by industry could be a potentially modifiable barrier to the inclusion of patients with limited English proficiency.


Subject(s)
Clinical Trials as Topic , Communication Barriers , Consent Forms , Drug Industry , Research Personnel , Translations , Humans , Consent Forms/economics , Translating , Clinical Trials as Topic/economics , Drug Industry/economics , Research Personnel/economics
4.
Nat Commun ; 14(1): 3168, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280220

ABSTRACT

High throughput drug screening is an established approach to investigate tumor biology and identify therapeutic leads. Traditional platforms use two-dimensional cultures which do not accurately reflect the biology of human tumors. More clinically relevant model systems such as three-dimensional tumor organoids can be difficult to scale and screen. Manually seeded organoids coupled to destructive endpoint assays allow for the characterization of treatment response, but do not capture transitory changes and intra-sample heterogeneity underlying clinically observed resistance to therapy. We present a pipeline to generate bioprinted tumor organoids linked to label-free, time-resolved imaging via high-speed live cell interferometry (HSLCI) and machine learning-based quantitation of individual organoids. Bioprinting cells gives rise to 3D structures with unaltered tumor histology and gene expression profiles. HSLCI imaging in tandem with machine learning-based segmentation and classification tools enables accurate, label-free parallel mass measurements for thousands of organoids. We demonstrate that this strategy identifies organoids transiently or persistently sensitive or resistant to specific therapies, information that could be used to guide rapid therapy selection.


Subject(s)
Bioprinting , Neoplasms , Humans , Drug Evaluation, Preclinical/methods , Organoids/metabolism , Neoplasms/pathology , Interferometry
5.
Aging Cell ; 22(6): e13842, 2023 06.
Article in English | MEDLINE | ID: mdl-37132288

ABSTRACT

Mitochondrial DNA (mtDNA) deletion mutations cause many human diseases and are linked to age-induced mitochondrial dysfunction. Mapping the mutation spectrum and quantifying mtDNA deletion mutation frequency is challenging with next-generation sequencing methods. We hypothesized that long-read sequencing of human mtDNA across the lifespan would detect a broader spectrum of mtDNA rearrangements and provide a more accurate measurement of their frequency. We employed nanopore Cas9-targeted sequencing (nCATS) to map and quantitate mtDNA deletion mutations and develop analyses that are fit-for-purpose. We analyzed total DNA from vastus lateralis muscle in 15 males ranging from 20 to 81 years of age and substantia nigra from three 20-year-old and three 79-year-old men. We found that mtDNA deletion mutations detected by nCATS increased exponentially with age and mapped to a wider region of the mitochondrial genome than previously reported. Using simulated data, we observed that large deletions are often reported as chimeric alignments. To address this, we developed two algorithms for deletion identification which yield consistent deletion mapping and identify both previously reported and novel mtDNA deletion breakpoints. The identified mtDNA deletion frequency measured by nCATS correlates strongly with chronological age and predicts the deletion frequency as measured by digital PCR approaches. In substantia nigra, we observed a similar frequency of age-related mtDNA deletions to those observed in muscle samples, but noted a distinct spectrum of deletion breakpoints. NCATS-mtDNA sequencing allows the identification of mtDNA deletions on a single-molecule level, characterizing the strong relationship between mtDNA deletion frequency and chronological aging.


Subject(s)
Nanopore Sequencing , Male , Humans , Sequence Deletion/genetics , Aging/genetics , Longevity , DNA, Mitochondrial/genetics
6.
ACS Nano ; 16(8): 11516-11544, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35916417

ABSTRACT

Quantitative phase imaging (QPI) is a label-free, wide-field microscopy approach with significant opportunities for biomedical applications. QPI uses the natural phase shift of light as it passes through a transparent object, such as a mammalian cell, to quantify biomass distribution and spatial and temporal changes in biomass. Reported in cell studies more than 60 years ago, ongoing advances in QPI hardware and software are leading to numerous applications in biology, with a dramatic expansion in utility over the past two decades. Today, investigations of cell size, morphology, behavior, cellular viscoelasticity, drug efficacy, biomass accumulation and turnover, and transport mechanics are supporting studies of development, physiology, neural activity, cancer, and additional physiological processes and diseases. Here, we review the field of QPI in biology starting with underlying principles, followed by a discussion of technical approaches currently available or being developed, and end with an examination of the breadth of applications in use or under development. We comment on strengths and shortcomings for the deployment of QPI in key biomedical contexts and conclude with emerging challenges and opportunities based on combining QPI with other methodologies that expand the scope and utility of QPI even further.


Subject(s)
Microscopy , Neoplasms , Animals , Humans , Microscopy/methods , Software , Cell Size , Mammals
7.
STAR Protoc ; 3(3): 101568, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35880122

ABSTRACT

Metabolism regulates cell fates during early mammalian cell differentiation. This protocol describes the steps for directed differentiation of primed human pluripotent stem cells (hPSCs) into the three primary germ lineages-ectoderm, endoderm, and mesoderm-using a chemically defined nutrient-balanced media formulation. Although the transient removal and addition of specific nutrients does not occur in vivo during embryonic development, manipulation of nutrients in vitro provides an accessible method for evaluating how extracellular and intracellular metabolites help determine hPSC fate. For complete details on the use and execution of this protocol, please refer to Lu et al. (2019) and Lu et al. (2022).


Subject(s)
Pluripotent Stem Cells , Animals , Cell Differentiation , Cell Lineage , Endoderm , Female , Humans , Mammals , Nutrients , Pregnancy
8.
Cell Res ; 32(6): 509-510, 2022 06.
Article in English | MEDLINE | ID: mdl-35459937

Subject(s)
Citric Acid Cycle
9.
Dev Cell ; 57(5): 610-623.e8, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35216682

ABSTRACT

Human pluripotent stem cells (hPSCs) can self-renew indefinitely or can be induced to differentiate. We previously showed that exogenous glutamine (Gln) withdrawal biased hPSC differentiation toward ectoderm and away from mesoderm. We revealed that, although all three germ lineages are capable of de novo Gln synthesis, only ectoderm generates sufficient Gln to sustain cell viability and differentiation, and this finding clarifies lineage fate restrictions under Gln withdrawal. Furthermore, we found that Gln acts as a signaling molecule for ectoderm that supersedes lineage-specifying cytokine induction. In contrast, Gln in mesoderm and endoderm is the preferred precursor of α-ketoglutarate without a direct signaling role. Our work raises a question about whether the nutrient environment functions directly in cell differentiation during development. Interestingly, transcriptome analysis of a gastrulation-stage human embryo shows that unique Gln enzyme-encoding gene expression patterns may also distinguish germ lineages in vivo. Together, our study suggests that intracellular Gln may help coordinate differentiation of the three germ layers.


Subject(s)
Glutamine , Pluripotent Stem Cells , Cell Differentiation/physiology , Cell Lineage , Endoderm/metabolism , Germ Layers , Glutamine/metabolism , Humans , Mesoderm/metabolism
10.
Sci Rep ; 11(1): 19448, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593878

ABSTRACT

Quantitative phase microscopy (QPM) enables studies of living biological systems without exogenous labels. To increase the utility of QPM, machine-learning methods have been adapted to extract additional information from the quantitative phase data. Previous QPM approaches focused on fluid flow systems or time-lapse images that provide high throughput data for cells at single time points, or of time-lapse images that require delayed post-experiment analyses, respectively. To date, QPM studies have not imaged specific cells over time with rapid, concurrent analyses during image acquisition. In order to study biological phenomena or cellular interactions over time, efficient time-dependent methods that automatically and rapidly identify events of interest are desirable. Here, we present an approach that combines QPM and machine learning to identify tumor-reactive T cell killing of adherent cancer cells rapidly, which could be used for identifying and isolating novel T cells and/or their T cell receptors for studies in cancer immunotherapy. We demonstrate the utility of this method by machine learning model training and validation studies using one melanoma-cognate T cell receptor model system, followed by high classification accuracy in identifying T cell killing in an additional, independent melanoma-cognate T cell receptor model system. This general approach could be useful for studying additional biological systems under label-free conditions over extended periods of examination.


Subject(s)
Machine Learning , Microscopy, Phase-Contrast/methods , Time-Lapse Imaging/methods , Cell Line, Tumor , Humans , Melanoma , T-Lymphocytes
11.
STAR Protoc ; 2(4): 100850, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34632418

ABSTRACT

This protocol describes the assembly and use of MitoPunch to deliver mitochondria containing mitochondrial DNA (mtDNA) into cells lacking mtDNA (ρ0 cells). MitoPunch generates stable isolated mitochondrial recipient clones with restored mtDNA and recovered respiration, enabling investigation of mtDNA mutations and mtDNA-nuclear DNA interactions in a range of cell types. For complete details on the use and execution of this protocol, please refer to Sercel et al. (2021) and Patananan et al. (2020).


Subject(s)
DNA, Mitochondrial , Mitochondria , Animals , Cells, Cultured , Clone Cells/metabolism , DNA, Mitochondrial/genetics , Mammals/genetics , Mitochondria/genetics
12.
Cell Metab ; 33(11): 2108-2121, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34644538

ABSTRACT

Pluripotent stem cells model certain features of early mammalian development ex vivo. Medium-supplied nutrients can influence self-renewal, lineage specification, and earliest differentiation of pluripotent stem cells. However, which specific nutrients support these distinct outcomes, and their mechanisms of action, remain under active investigation. Here, we evaluate the available data on nutrients and their metabolic conversion that influence pluripotent stem cell fates. We also discuss key questions open for investigation in this rapidly expanding area of increasing fundamental and practical importance.


Subject(s)
Pluripotent Stem Cells , Animals , Cell Differentiation , Cell Lineage , Mammals , Nutrients
13.
Trends Cell Biol ; 31(4): 311-323, 2021 04.
Article in English | MEDLINE | ID: mdl-33422359

ABSTRACT

Mammalian cells, with the exception of erythrocytes, harbor mitochondria, which are organelles that provide energy, intermediate metabolites, and additional activities to sustain cell viability, replication, and function. Mitochondria contain multiple copies of a circular genome called mitochondrial DNA (mtDNA), whose individual sequences are rarely identical (homoplasmy) because of inherited or sporadic mutations that result in multiple mtDNA genotypes (heteroplasmy). Here, we examine potential mechanisms for maintenance or shifts in heteroplasmy that occur in induced pluripotent stem cells (iPSCs) generated by cellular reprogramming, and further discuss manipulations that can alter heteroplasmy to impact stem and differentiated cell performance. This additional insight will assist in developing more robust iPSC-based models of disease and differentiated cell therapies.


Subject(s)
DNA, Mitochondrial , Induced Pluripotent Stem Cells , Animals , Cellular Reprogramming/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondrial Dynamics
14.
Lab Chip ; 21(5): 942-950, 2021 03 07.
Article in English | MEDLINE | ID: mdl-33459328

ABSTRACT

We demonstrate a novel platform for mapping the pressure distribution of complex microfluidics networks with high spatial resolution. Our approach utilizes colorimetric interferometers enabled by lossy optical resonant cavities embedded in a silicon substrate. Detection of local pressures in real-time within a fluid network occurs by monitoring a reflected color emanating from each optical cavity. Pressure distribution measurements spanning a 1 cm2 area with a spatial resolution of 50 µm have been achieved. We applied a machine-learning-assisted sensor calibration method to generate a dynamic measurement range from 0 to 5.0 psi, with 0.2 psi accuracy. Adjustments to this dynamic measurement range are possible to meet different application needs for monitoring flow conditions in complex microfluidics networks, for the timely detection of anomalies such as clogging or leakage at their occurring locations.


Subject(s)
Colorimetry , Microfluidics , Calibration , Silicon
15.
Elife ; 102021 01 13.
Article in English | MEDLINE | ID: mdl-33438576

ABSTRACT

Generating mammalian cells with specific mitochondrial DNA (mtDNA)-nuclear DNA (nDNA) combinations is desirable but difficult to achieve and would be enabling for studies of mitochondrial-nuclear communication and coordination in controlling cell fates and functions. We developed 'MitoPunch', a pressure-driven mitochondrial transfer device, to deliver isolated mitochondria into numerous target mammalian cells simultaneously. MitoPunch and MitoCeption, a previously described force-based mitochondrial transfer approach, both yield stable isolated mitochondrial recipient (SIMR) cells that permanently retain exogenous mtDNA, whereas coincubation of mitochondria with cells does not yield SIMR cells. Although a typical MitoPunch or MitoCeption delivery results in dozens of immortalized SIMR clones with restored oxidative phosphorylation, only MitoPunch can produce replication-limited, non-immortal human SIMR clones. The MitoPunch device is versatile, inexpensive to assemble, and easy to use for engineering mtDNA-nDNA combinations to enable fundamental studies and potential translational applications.


Mitochondria are specialized structures within cells that generate vital energy and biological building blocks. Mitochondria have a double membrane and contain many copies of their own circular DNA (mitochondrial DNA), which include the blueprints to create just thirteen essential mitochondrial proteins. Like all genetic material, mitochondrial DNA can become damaged or mutated, and these changes can be passed on to offspring. Some of these alterations are linked to severe and debilitating diseases. Both the double membrane of the mitochondria and their high number of DNA copies make treating such diseases difficult. A successful therapy must be capable of correcting almost every copy of mitochondrial DNA. However, the multiple copies of mitochondrial DNA create a problem for genetic research as current techniques are unable to reliably introduce particular mitochondrial mutations to all types of human cells to investigate how they may alter cell function. Sercel, Patananan et al. have developed a method to deliver new mitochondria into thousands of cells at the same time. This technique, called MitoPunch, uses a pressure-driven device to propel mitochondria taken from donor cells into recipient cells without mitochondrial DNA to reestablish their function. Using human cancer cells and healthy skin cells that lack mitochondrial DNA, Sercel, Patananan et al. showed that cells that received mitochondria retained the new mitochondrial DNA. The technique uses readily accessible parts, meaning it can be performed quickly and inexpensively in any laboratory. It further only requires a small amount of donor starting material, meaning that even precious samples with limited material could be used as mitochondrial donors. This new technique has several important potential applications for mitochondrial DNA research. It could be used in the lab to create large numbers of cell lineswith known mutations in the mitochondrial DNA to establish new systems that test drugs or probe the interaction between mitochondrial and nuclear DNA. It could be used to study a broad spectrum of biological questions since mitochondrial function is essential for several processes required for life. Critically, it could also be used as a starting point to develop next-generation therapies capable of treating inherited mitochondrial genetic diseases in severely affected patients.


Subject(s)
Cell Differentiation , Cell Nucleus/metabolism , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Mice
16.
Front Cell Dev Biol ; 9: 787684, 2021.
Article in English | MEDLINE | ID: mdl-34988079

ABSTRACT

Background: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be used as a source for cell delivery to remuscularize the heart after myocardial infarction. Despite their therapeutic potential, the emergence of ventricular arrhythmias has limited their application. We previously developed a double reporter hESC line to isolate first heart field (FHF: TBX5 + NKX2-5 +) and second heart field (SHF: TBX5 - NKX2-5 + ) CMs. Herein, we explore the role of TBX5 and its effects on underlying gene regulatory networks driving phenotypical and functional differences between these two populations. Methods: We used a combination of tools and techniques for rapid and unsupervised profiling of FHF and SHF populations at the transcriptional, translational, and functional level including single cell RNA (scRNA) and bulk RNA sequencing, atomic force and quantitative phase microscopy, respirometry, and electrophysiology. Results: Gene ontology analysis revealed three biological processes attributed to TBX5 expression: sarcomeric structure, oxidative phosphorylation, and calcium ion handling. Interestingly, migratory pathways were enriched in SHF population. SHF-like CMs display less sarcomeric organization compared to FHF-like CMs, despite prolonged in vitro culture. Atomic force and quantitative phase microscopy showed increased cellular stiffness and decreased mass distribution over time in FHF compared to SHF populations, respectively. Electrophysiological studies showed longer plateau in action potentials recorded from FHF-like CMs, consistent with their increased expression of calcium handling genes. Interestingly, both populations showed nearly identical respiratory profiles with the only significant functional difference being higher ATP generation-linked oxygen consumption rate in FHF-like CMs. Our findings suggest that FHF-like CMs display more mature features given their enhanced sarcomeric alignment, calcium handling, and decreased migratory characteristics. Finally, pseudotime analyses revealed a closer association of the FHF population to human fetal CMs along the developmental trajectory. Conclusion: Our studies reveal that distinguishing FHF and SHF populations based on TBX5 expression leads to a significant impact on their downstream functional properties. FHF CMs display more mature characteristics such as enhanced sarcomeric organization and improved calcium handling, with closer positioning along the differentiation trajectory to human fetal hearts. These data suggest that the FHF CMs may be a more suitable candidate for cardiac regeneration.

17.
JCI Insight ; 6(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33284134

ABSTRACT

Extrapulmonary manifestations of COVID-19 are associated with a much higher mortality rate than pulmonary manifestations. However, little is known about the pathogenesis of systemic complications of COVID-19. Here, we create a murine model of SARS-CoV-2-induced severe systemic toxicity and multiorgan involvement by expressing the human ACE2 transgene in multiple tissues via viral delivery, followed by systemic administration of SARS-CoV-2. The animals develop a profound phenotype within 7 days with severe weight loss, morbidity, and failure to thrive. We demonstrate that there is metabolic suppression of oxidative phosphorylation and the tricarboxylic acid (TCA) cycle in multiple organs with neutrophilia, lymphopenia, and splenic atrophy, mirroring human COVID-19 phenotypes. Animals had a significantly lower heart rate, and electron microscopy demonstrated myofibrillar disarray and myocardial edema, a common pathogenic cardiac phenotype in human COVID-19. We performed metabolomic profiling of peripheral blood and identified a panel of TCA cycle metabolites that served as biomarkers of depressed oxidative phosphorylation. Finally, we observed that SARS-CoV-2 induces epigenetic changes of DNA methylation, which affects expression of immune response genes and could, in part, contribute to COVID-19 pathogenesis. Our model suggests that SARS-CoV-2-induced metabolic reprogramming and epigenetic changes in internal organs could contribute to systemic toxicity and lethality in COVID-19.


Subject(s)
COVID-19/complications , Epigenesis, Genetic/immunology , Failure to Thrive/etiology , SARS-CoV-2/pathogenicity , Wasting Syndrome/etiology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Animals, Genetically Modified , COVID-19/metabolism , COVID-19/physiopathology , COVID-19/virology , Citric Acid Cycle/physiology , DNA Methylation/physiology , Disease Models, Animal , Failure to Thrive/physiopathology , Humans , Immunity/genetics , Male , Mice , Oxidative Phosphorylation , Renin-Angiotensin System/physiology , SARS-CoV-2/metabolism , Wasting Syndrome/physiopathology
18.
Cell Rep ; 33(13): 108562, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378680

ABSTRACT

Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a ρ0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch "pipeline" enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.


Subject(s)
Cellular Reprogramming , Fibroblasts/metabolism , Gene Transfer Techniques , High-Throughput Screening Assays/methods , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/transplantation , Animals , Cell Differentiation , Cell Line , DNA, Mitochondrial/metabolism , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Metabolome , Mice , Mice, Inbred C57BL , Transcriptome
19.
Sci Rep ; 10(1): 14328, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868785

ABSTRACT

The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and function of transferred mtDNA remains unknown. Here, we evaluate mtDNA retention in new host cells using 'MitoPunch', a device that transfers isolated mitochondria into mouse and human cells. We show that newly introduced mtDNA is stably retained in mtDNA-deficient (ρ0) recipient cells following uridine-free selection, although exogenous mtDNA is lost from metabolically impaired, mtDNA-intact (ρ+) cells. We then introduced a second selective pressure by transferring chloramphenicol-resistant mitochondria into chloramphenicol-sensitive, metabolically impaired ρ+ mouse cybrid cells. Following double selection, recipient cells with mismatched nuclear (nDNA) and mitochondrial (mtDNA) genomes retained transferred mtDNA, which replaced the endogenous mutant mtDNA and improved cell respiration. However, recipient cells with matched mtDNA-nDNA failed to retain transferred mtDNA and sustained impaired respiration. Our results suggest that exogenous mtDNA retention in metabolically impaired ρ+ recipients depends on the degree of recipient mtDNA-nDNA co-evolution. Uncovering factors that stabilize exogenous mtDNA integration will improve our understanding of in vivo mitochondrial transfer and the interplay between mitochondrial and nuclear genomes.


Subject(s)
DNA, Mitochondrial , Gene Transfer Techniques , Hybrid Cells , Mitochondria , Animals , Cell Line, Tumor , Chloramphenicol , HEK293 Cells , Humans , Mice
20.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32621799

ABSTRACT

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Subject(s)
Cicatrix/metabolism , Collagen Type V/deficiency , Collagen Type V/metabolism , Heart Injuries/metabolism , Myocardial Contraction/genetics , Myofibroblasts/metabolism , Animals , Cicatrix/genetics , Cicatrix/physiopathology , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Collagen Type III/genetics , Collagen Type III/metabolism , Collagen Type V/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Female , Fibrosis/genetics , Fibrosis/metabolism , Gene Expression Regulation/genetics , Integrins/antagonists & inhibitors , Integrins/genetics , Integrins/metabolism , Isoproterenol/pharmacology , Male , Mechanotransduction, Cellular/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Atomic Force/instrumentation , Microscopy, Electron, Transmission , Myocardial Contraction/drug effects , Myofibroblasts/cytology , Myofibroblasts/pathology , Myofibroblasts/ultrastructure , Principal Component Analysis , Proteomics , RNA-Seq , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...